59 research outputs found

    Causes, consequences, and management of tree spatial patterns in fire-frequent forests

    Get PDF
    2022 Summer.Includes bibliographical references.Increasingly, restoration treatments are being implemented to dually meet wildland fire hazard reduction alongside ecological objectives. Restoration treatments however deviate from conventional fuels treatments by emphasizing the re-creation of forest structure present prior to EuroAmerican settlement, notably the retention of single and grouped trees interspersed between canopy openings. As these historical forests persisted over cycles of fire returns, it is assumed that restoring these historical complex tree spatial patterns will, in turn, restore historical ecological processes. This includes more benign fire behavior that results in only partial tree mortality, allowing persistent and partial retention of forest cover over cycles of fire return. The qualitative description of historical forest structure, lacks, however, a clear process-based explanation detailing the interactions of heterogeneous forest structures and fire. While fires were historically frequent, it is unclear what role fire played in the genesis and maintenance of tree spatial patterns. If models of tree spatial dynamics can be improved and the interactions between tree spatial patterns and fire can be elucidated, forest managers will have an improved understanding of the implications of restoration-based fuels hazard reduction treatments both during fire-free periods and during fire events. The aims of this dissertation were to: 1) explore the causes of tree spatial patterns in dry fire-frequent forests; 2) investigate the consequences of tree spatial patterns on potential fire behavior and effects; 3) determine how alternate silvicultural strategies targeted at manipulation of tree spatial patterns can influence fire behavior and effects. In Chapter 2, I explored spatial patterns of tree regeneration over 44 years in absence of fire. In cooler periods, regeneration preferred clustering in openings, including openings following overstory mortality and away from overstory trees. Mortality risk of regeneration was heightened nearer overstory trees. In warmer periods, these trends reversed, likely because of a 'nurse effect' from the overstory. In anticipation of climate change, these results suggest silviculturists may benefit by capturing regeneration mortality in within openings while keeping regeneration near the overstory. In Chapter 3, I found that regenerating trees also form heterogeneous patterns following stand-replacing fires. In these sparse, early seral forests, all species were spatially aggregated, partly attributable to the influence of topography and beneficial interspecific attractions between ponderosa pine and other species. Results from this study suggest that scale-dependent, and often facilitatory, rather than competitive, processes act on regenerating trees. In Chapter 4, I studied the interaction between fire and tree spatial patterns, both historically and in modern forests. Tree mortality in the historical period was clustered and density-dependent because tree mortality was greater among small trees, which tended to be assembled in tightly spaced clusters. Tree mortality in the contemporary period was widespread, except for dispersed large trees, because most trees were a part of large, interconnected tree groups. Postfire tree patterns in the historical period, unlike the contemporary period, were within the historical range of variability found for the western United States. This divergence suggests that decades of forest dynamics without significant disturbances have altered the historical means of pyric pattern maintenance. In Chapter 5, I examined how fuels treatment designs with different manipulations of tree spatial patterns may influence treatment effectiveness. I simulated fires on hypothetical cuttings which manipulated the arrangement of crown fuels horizontally and vertically, either increasing the distance between tree crowns or not, and either removing small trees or not. All cutting methods reduced fire behavior and severity, but the results confirm possible tradeoffs between ecological restoration and hazard reduction; treatments that separated tree crowns reduced severity the most because these treatments reduced crown fire spread. But these can easily be overcome where restoration treatments incorporate small tree removal, because this action limits crown fire initiation. Managers could also incorporate managed fires to reduce surface fuel loads and use more aggressive cuttings to further gains in hazard reduction, regardless of cutting method used

    Epizootic Emergence of Usutu Virus in Wild and Captive Birds in Germany

    Get PDF
    This study aimed to identify the causative agent of mass mortality in wild and captive birds in southwest Germany and to gather insights into the phylogenetic relationship and spatial distribution of the pathogen. Since June 2011, 223 dead birds were collected and tested for the presence of viral pathogens. Usutu virus (USUV) RNA was detected by real-time RT-PCR in 86 birds representing 6 species. The virus was isolated in cell culture from the heart of 18 Blackbirds (Turdus merula). USUV-specific antigen was demonstrated by immunohistochemistry in brain, heart, liver, and lung of infected Blackbirds. The complete polyprotein coding sequence was obtained by deep sequencing of liver and spleen samples of a dead Blackbird from Mannheim (BH65/11-02-03). Phylogenetic analysis of the German USUV strain BH65/11-02-03 revealed a close relationship with strain Vienna that caused mass mortality among birds in Austria in 2001. Wild birds from lowland river valleys in southwest Germany were mainly affected by USUV, but also birds kept in aviaries. Our data suggest that after the initial detection of USUV in German mosquitoes in 2010, the virus spread in 2011 and caused epizootics among wild and captive birds in southwest Germany. The data also indicate an increased risk of USUV infections in humans in Germany

    Field Camp for Astronauts: NASA's Geoscience Training Program for Planetary Exploration

    Get PDF
    Fifty years ago Apollo astronauts walked on the Moon to explore the geology and collect samples for Earth return. Several authors have discussed the strategic planning and training that enabled the Apollo successes, and assembled recommendations regarding todays lunar science objectives and astronaut training required to achieve those science goals. Since the 1980s, geoscience training for astronauts focused on observing the Earth from orbit. Today, we are building a geoscience training program to support informed Earth observations as well as the exploration culture for future human missions to the Moon and Mars. Our team partnered with JSCs crew training and astronaut offices to develop our 4-week geoscience program for the 2017 astronaut class. Because the astronauts have a variety of professional backgrounds, we provide a broad introduction to Earth and planetary sciences. But our prime focus is 2 weeks of intensive field work, a methodology introduced with the 2013 astronaut class. We completed the first half of the training a field trip to observe hurricane deposits along Galveston Bay; keynotes by Apollo colleagues highlighting Apollo experiences; a tightly-integrated week of introductory geology in the classroom followed by a week of fieldwork in the Rio Grande del Norte National Monument. The classroom included interactive map exercises that allowed the students to progressively build a base map of the field area that they used as a starting point for their week-long mapping exercise. We divided the class into small mapping groups to conduct their observations, mapping and interpretation of the geology. In addition to learning geological field work, our field training provided the platform for practicing expeditionary leadership, a key skill set valued by NASA for astronaut crews. Next summer the capstone fieldwork for the 2017 astronauts will include both mapping and rock sampling. Throughout the mapping, the class will collect additional data to help inform field and sampling decisions using diagnostic field instruments that are being tested in analog settings for their operational efficacy for future planetary exploration

    Madagascar’s extraordinary biodiversity: Threats and opportunities

    Get PDF
    Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar

    Madagascar’s extraordinary biodiversity: Evolution, distribution, and use

    Get PDF
    Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique living laboratory for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity

    A Possible Alignment Between the Orbits of Planetary Systems and their Visual Binary Companions

    Get PDF
    Astronomers do not have a complete picture of the effects of wide-binary companions (semimajor axes greater than 100 au) on the formation and evolution of exoplanets. We investigate these effects using new data from Gaia Early Data Release 3 and the Transiting Exoplanet Survey Satellite mission to characterize wide-binary systems with transiting exoplanets. We identify a sample of 67 systems of transiting exoplanet candidates (with well-determined, edge-on orbital inclinations) that reside in wide visual binary systems. We derive limits on orbital parameters for the wide-binary systems and measure the minimum difference in orbital inclination between the binary and planet orbits. We determine that there is statistically significant difference in the inclination distribution of wide-binary systems with transiting planets compared to a control sample, with the probability that the two distributions are the same being 0.0037. This implies that there is an overabundance of planets in binary systems whose orbits are aligned with those of the binary. The overabundance of aligned systems appears to primarily have semimajor axes less than 700 au. We investigate some effects that could cause the alignment and conclude that a torque caused by a misaligned binary companion on the protoplanetary disk is the most promising explanation

    stairs and fire

    Get PDF

    The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    No full text
    International audienceNorthwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, similar to QFM) on the liquidus to higher oxygen fugacity (similar to QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystalline and shock-amorphized plagioclase (An(5062)), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. We obtain a Sm-Nd formation age of 2.37 +/- 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock Sm-147/Nd-144 value of 0.37 +/- 0.02 is consistent with it being derived directly from its source and the high initial epsilon(143)(Nd) value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a second igneous unit from the early Amazonian.(C) 2017 Elsevier Ltd. All rights reserved
    corecore